Reactor Antineutrino Spectra

Collaborators: D. Danielson, J. Friar, G. Garvey, G. Jungman (Los Alamos)

L. McCutchan, A. Sonzogni (BNL)

P. Vogel (Caltech)

X. Wang (Huzhou University)

The predicted number of detectable reactor antineutrinos has evolved upward over time

<u>In the 1980s</u> two predictions became the standards for the field:

- Schreckenbach *et al.* converted their measured fission β -spectra for ²³⁵U, ²³⁹Pu and ²⁴¹Pu into antineutrino spectra
- Vogel et al. used the nuclear databases to predict the spectrum for ²³⁸U

<u>In 2011</u> both Mueller *et al.* and Huber predicted that improvements in the description of the spectra increase the expected number of antineutrinos by 5-6%.

The <u>Original</u> Expected Fluxes were Determined from Measurements of Aggregate Fission β -Spectra (electrons) at the ILL Reactor in the 1980s

- The thermal fission beta spectra for ²³⁵U, ²³⁹Pu,
 ²⁴¹Pu were measured at ILL.
- These β -spectra were converted to antineutrino spectra by fitting to 30 end-point energies
- ²³⁸U requires fast neutrons to fission
 - difficult to measure at a reactor
- ⇒ Vogel *et al.* used the ENDF-5 nuclear database to estimate for ²³⁸U.

Vogel, et al., Phys. Rev. C24, 1543 (1981).

K. Schreckenbach et al. PLB118, 162 (1985)

A.A. Hahn et al. PLB160, 325 (1989)

$$S_{\beta}(E) = \sum_{i=1,30} a_{i} S^{i}(E, E_{o}^{i})$$

$$S^{i}(E, E_{0}^{i}) = E_{\beta}p_{\beta}(E_{0}^{i} - E_{\beta})^{2}F(E, Z_{eff})(1 + E_{\beta})^{2}F(E, Z_{eff})$$

Parameterized

Two inputs are needed to convert an aggregate β -spectrum to an antineutrino spectrum: (1) the Z of the fission fragments for the Fermi function, and (2) the sub-dominant corrections

$$S^{i}(E, E_{0}^{i}) = E_{\beta} p_{\beta} (E_{0}^{i} - E_{\beta})^{2} F(E, Z) (1 + \delta_{corrections})$$

The Zeff that determines the Fermi function:

On average, higher end-point energy means lower Z.

- Comes from nuclear binding energy differences

$$Z_{eff} \sim a + b E_0 + c E_0^2$$

The corrections

$$\delta_{correction}(E_e,Z,A) = \delta_{FS} + \delta_{WM} + \delta_R + \delta_{rad}$$

 δ_{FS} = Finite size correction to Fermi function

 δ_{WM} = Weak magnetism

 $\delta_{\rm R}$ = Recoil correction

 $\delta_{\rm rad}$ = Radiative correction

A change to the approximations used for these effects led to the anomaly

The higher the average nuclear charge Zeff in the Fermi function used to convert the β -spectrum, the higher ν -spectrum

$$S^{i}(E, E_{0}^{i}) = E_{\beta}p_{\beta}(E_{0}^{i} - E_{\beta})^{2}F(E, \mathbb{Z}_{eff}(E_{0}))(1 + \delta)$$

- The new parameterization (P. Huber) of Zeff with end-point energy E₀ changes the Fermi function and accounts for 50% of the current anomaly.
- Both fits (original & new) used a quadratic fit $Z_{eff} = a + b E_0 + c E_0^2$

The finite size and weak magnetism corrections account for the remainder of the anomaly

$$S(E_e, Z, A) = \frac{G_F^2}{2\pi^3} p_e E_e (E_0 - E_e)^2 F(E_e, Z, A) (1 + \delta_{corr}(E_e, Z, A))$$

 δ_{FS} = Finite size correction to Fermi function δ_{WM} = Weak magnetism

Originally approximated by a parameterization:
$$\delta_{FS}$$
 + δ_{WM} = $0.0065(E_v - 4MeV)$

In the updated spectra, both corrections were applied on a state-by-state basis

An approximation was used for each:

$$\delta_{FS} = -\frac{10Z\alpha R}{9\hbar c} E_{\beta}; \ R = 1.2A^{1/3}$$

$$\delta_{WM} = +\frac{4(\mu_V - 1/2)}{3M_{\odot}} 2E_{\beta}$$

Led to a systematic increase of in the antineutrino flux above 2 MeV

Uncertainties in the detailed contributions to the total spectra

30% of the beta-decay transitions involved are so-called forbidden Allowed transitions $\Delta L=0$; Forbidden transitions $\Delta L=0$

Forbidden transitions introduce a shape factor C(E):

$$S(E_e, Z, A) = \frac{G_F^2}{2\pi^3} p_e E_e (E_0 - E_e)^2 \underline{C(E)} F(E_e, Z, A) (1 + \delta_{corr}(E_e, Z, A))$$

The corrections δ for forbidden transitions are also different and sometimes unknown :

Classification	ΔJ^{π}	Operator	Shape Factor $C(E)$	Fractional Weak Magnetism Correction $\delta_{WM}(E)$
Allowed GT	1+	$\Sigma \equiv \sigma \tau$	1	$rac{2}{3}\left[rac{\mu_{v}-1/2}{M_{N}g_{A}} ight]\left(E_{e}eta^{2}-E_{ u} ight)$
Non-unique 1^{st} Forbidden GT	0-	$\left[\Sigma,r ight]^{0-}$	$p_e^2 + E_\nu^2 + 2\beta^2 E_\nu E_e$	0
Non-unique 1^{st} Forbidden ρ_A	0-	$[\Sigma, r]^{0-}$	λE_0^2	0
Non-unique 1^{st} Forbidden GT	1-	$[\Sigma, r]^{1-}$	$p_e^2 + E_{\nu}^2 - \frac{4}{3}\beta^2 E_{\nu} E_e$	$\left[\frac{\mu_{v}-1/2}{M_{N}g_{A}}\right]\left[\frac{(p_{e}^{2}+E_{\nu}^{2})(\beta^{2}E_{e}-E_{\nu})+2\beta^{2}E_{e}E_{\nu}(E_{\nu}-E_{e})/3}{(p_{e}^{2}+E_{\nu}^{2}-4\beta^{2}E_{\nu}E_{e}/3)}\right]$
Unique 1^{st} Forbidden GT	2-	$[\Sigma, r]^{2-}$	$p_e^2 + E_ u^2$	$\frac{3}{5} \left[\frac{\mu_{\nu} - 1/2}{M_{N}g_{A}} \right] \left[\frac{(p_{e}^{2} + E_{\nu}^{2})(\beta^{2}E_{e} - E_{\nu}) + 2\beta^{2}E_{e}E_{\nu}(E_{\nu} - E_{e})/3}{(p_{e}^{2} + E_{\nu}^{2})} \right]$
Allowed F	0+	τ	1	
Non-unique 1 st Forbidden F	1-	$r\tau$	$p_e^2 + E_{\nu}^2 + \frac{2}{3}\beta^2 E_{\nu} E_e$	1 —— All Allowed

The forbidden transitions increase the uncertainty in the expected spectrum.

Non-unique 1^{st} Forbidden $\vec{J}_V \mid 1^-$

Two equally good fits to the Schreckenbach β -spectra, lead to ν -spectra that differ by 4%.

Weak Magnetism has an uncertainty arising from the approximation used for the orbital contribution and from <u>omitted 2-body</u> currents. But, dominant $0+\rightarrow 0$ - transitions have zero δ_{WM} , with no uncertainty

$$\delta_{WM}^{GT} = \frac{4(\mu_V - \frac{1}{2})}{6M_N g_A} (E_e \beta^2 - E_V)$$

$$\delta_{LS}^{j_f j_i} \equiv \frac{\langle J_f \mid \mid \vec{\Lambda} \mid \mid J_i \rangle}{\langle J_f \mid \mid \vec{\Sigma} \mid \mid J_i \rangle} \simeq -\frac{1}{2}$$

- Checked for a subset of fission fragments.
- A check for all fission fragments, including 2-body terms, requires a large supercomputing effort.

Estimated uncertainty ~ 30% for this 4% correction to the spectra

The Finite Size Correction can be expressed in terms of Zemach moments

$$\delta_{FS} = \Delta F_{\text{REL}} / F_{\text{REL}} = -\frac{Z \alpha}{3\hbar c} \left(4E \langle r \rangle_{(2)} + E \langle r \rangle_{(2)}^r - \frac{E_{\nu} \langle r \rangle_{(2)}^r}{3} + \frac{m^2 c^4}{E} (2 \langle r \rangle_{(2)} - \langle r \rangle_{(2)}^r) \right)$$

Approximated as :
$$\delta_{FS} = -\frac{3Z\alpha}{2\hbar c} < r >_{(2)} (E_e - \frac{E_v}{27} + \frac{m^2c^4}{3E_e})$$

- Found to be a good approximation for allowed transitions.
- Not checked for forbidden transitions.

Estimated uncertainty ~ 20% for this 5% correction to the spectra

Simultaneous fit of the Daya Bay antineutrino spectrum and the equivalent aggregate β —spectrum with (1) point-wise Z_{eff} and (2)improved descriptions of forbidden transitions reduces the anomaly from 5% to 2.5%

The magnitude of the IBD cross sections change, depending on assumptions, but not the ratio of one isotope to another

	all allowed	all allowed	allow.+forbid.	
	$Z_{ m eff}^{ m Huber}$	$Z_{ m eff}$	$Z_{ m eff}$	$(Z_{\rm eff}^2)^{1/2}$
$^{235}\mathrm{U}$	6.69	6.58	6.47	6.48
$^{239}\mathrm{Pu}$	4.36	4.3	4.22	4.23
ratio	1.534	1.530	1.533	1.532

Uncertainties due to Sawtooth Fine Structures in the antineutrino spectra unlikely to affect JUNO's ability to extract the mass hierarchy if a Fourier analysis is possible

The Reactor Neutrino 'BUMP'

All recent reactor neutrino experiments observed a shoulder at 4-6 MeV, relative to expectations.

- The current expectations are Huber (²³⁵U,^{239,241}Pu) and Mueller (²³⁸U)
- RENO observed the largest bump
- Double-Chooz used Huber and Haag (²³⁸U) for expected flux

Possible Origins of the 'Bump'

- 238U as a source of the shoulder
 - Possible because ²³⁸U has a hard spectrum and contributes significantly in the Bump energy region. It is also the most uncertain actinide.
 But the BUMP is reported by Neutrino-4, which requires that it is in ²³⁵U.
- **A** possible error in the ILL β -decay measurements
 - True if the Neutrino-4 spectrum shape is confirmed.
 - Dwyer and Langford pointed to BUMP in the beta spectrum relative to ENDF/B-VII.1
 - Not predicted by BNL updated ENDF nuclear database, nor by the JEFF database.

All are nuclear physics explanations pointing to a problem with the 'expected spectra'.

Changes in the Antineutrino Spectra with the Reactor Fuel Burnup

Suggest a problem with the ²³⁵U/²³⁹Pu ratio

The Total Number of Antineutrinos Decreases with Burnup, but the Huber-Mueller Model does not agree with the measured slope

$$\sigma_f(F_{239}) = \bar{\sigma}_f + \frac{d\sigma_f}{dF_{239}}(F_{239} - \overline{F}_{239})$$

$$d\sigma_f/dF_{239} = (-1.86 \pm 0.18) \times 10^{-43} \text{ cm}^2/\text{fission}$$
 $(-2.46 \pm 0.06) \times 10^{-43} \text{cm}^2/\text{fission}$ $-1.86 \times 10^{-43} \text{ cm}^2/\text{fission}$

Experiment

Huber-Muller

JEFF+ENDF

The Nuclear database explains the Daya Bay fuel evolution data, but still allows for a (smaller) anomaly

- The IBD yield is predicted to change with the correct slope.
- But the absolute predicted value is high by 3.5%.
- This anomaly is not statistically significant.

Summary

- Changes in the treatment (1) the Fermi Function Zeff, (2) the subdominant corrections to beta-decay led to the reactor anomaly.
- Improved treatments reduce the size of the anomaly.
- ➤ Uncertainties remain in the spectra, but they are unlikely to affect JUNO, if a Fourier transform analysis is possible.
- ➤ The BUMP is due to standard nuclear physics issues that need to be tracked down. Neutrino-4 suggest that it is due to the ²³⁵U spectrum.
- ➤ The Daya Bay fuel evolution data suggest that the Schreckenbach ²³⁵U/²³⁹Pu ratio is also incorrect.